at the CNIO

Tag: adiponectin (Page 1 of 2)

The dual GLP-1/glucagon receptor agonist G49 mimics bariatric surgery effects by inducing metabolic rewiring and inter-organ crosstalk

M. Pilar Valdecantos, Laura Ruiz, Cintia Folgueira, Patricia Rada, Beatriz Gomez-Santos, Maite Solas, Ana B. Hitos, Joss Field, Vera Francisco, Carmen Escalona-Garrido, Sebastián Zagmutt, María Calderon-Dominguez, Paula Mera, Irma Garcia-Martinez, Elsa Maymó-Masip, Diana Grajales, Rosa Alen, Alfonso Mora, Neira Sáinz, Irene Vides-Urrestarazu, Nuria Vilarrasa, José M. Arbones-Mainar, Carlos Zaragoza, María J. Moreno-Aliaga, Patricia Aspichueta, Sonia Fernández-Veledo, Joan Vendrell, Dolors Serra, Laura Herrero, Renate Schreiber, Rudolf Zechner, Guadalupe Sabio, David Hornigold, Cristina M. Rondinone, Lutz Jermutus, Joseph Grimsby & Ángela M. Valverde

Bariatric surgery is effective for the treatment and remission of obesity and type 2 diabetes, but pharmacological approaches which exert similar metabolic adaptations are needed to avoid post-surgical complications.

Brown adipose tissue temperature after G49 administration in mice lacking FGF21 (Image: Cintia Folgueira).

Here we show how G49, an oxyntomodulin (OXM) analog and dual glucagon/glucagon-like peptide-1 receptor (GCGR/GLP-1R) agonist, triggers an inter-organ crosstalk between adipose tissue, pancreas, and liver which is initiated by a rapid release of free fatty acids (FFAs) by white adipose tissue (WAT) in a GCGR-dependent manner. This interactome leads to elevations in adiponectin and fibroblast growth factor 21 (FGF21), causing WAT beiging, brown adipose tissue (BAT) activation, increased energy expenditure (EE) and weight loss. Elevation of OXM, under basal and postprandial conditions, and similar metabolic adaptations after G49 treatment were found in plasma from patients with obesity early after metabolic bariatric surgery.

These results identify G49 as a potential pharmacological alternative sharing with bariatric surgery hormonal and metabolic pathways.

Adiponectin accounts for gender differences in hepatocellular carcinoma incidence

Elisa Manieri, Leticia Herrera-Melle, Alfonso Mora, Antonia Tomás-Loba, Luis Leiva-Vega, Delia I. Fernández, Elena Rodríguez, Laura Morán, Lourdes Hernández-Cosido, Jorge L. Torres, Luisa M. Seoane, Francisco Javier Cubero, Miguel Marcos & Guadalupe Sabio.

Hepatocellular carcinoma (HCC) is the sixth most common cancer type and the fourth leading cause of cancer-related death. This cancer appears with higher incidence in men and during obesity; however, the specific mechanisms underlying this correlation are unknown.

Adiponectin accounts for gender differences in liver cancer

HCC gender differences are driven by adiponectin (Image: Leticia Herrera-Melle).

Adipose tissue, a key organ in metabolic syndrome, shows evident gender disparities in the production of adipokines. Levels of the important adipokine adiponectin decrease in men during puberty, as well as in the obese state. Here, we show that this decrease in adiponectin levels is responsible for the increased liver cancer risk in males. We found that testosterone activates the protein JNK in mouse and human adipocytes. JNK-mediated inhibition of adiponectin secretion increases liver cancer cell proliferation, since adiponectin protects against liver cancer development through the activation of AMP-activated protein kinase (AMPK) and p38α.

This study provides insight into adipose tissue to liver crosstalk and its gender relation during cancer development, having the potential to guide strategies for new cancer therapeutics

« Older posts

© 2025 Sabio lab

Theme by Anders NorénUp ↑