Sabio lab

at the CNIC

Tag: JNK

Adiponectin accounts for gender differences in hepatocellular carcinoma incidence

Elisa Manieri, Leticia Herrera-Melle, Alfonso Mora, Antonia Tomás-Loba, Luis Leiva-Vega, Delia I. Fernández, Elena Rodríguez, Laura Morán, Lourdes Hernández-Cosido, Jorge L. Torres, Luisa M. Seoane, Francisco Javier Cubero, Miguel Marcos & Guadalupe Sabio.

Hepatocellular carcinoma (HCC) is the sixth most common cancer type and the fourth leading cause of cancer-related death. This cancer appears with higher incidence in men and during obesity; however, the specific mechanisms underlying this correlation are unknown.

Adiponectin accounts for gender differences in liver cancer

HCC gender differences are driven by adiponectin (Image: Leticia Herrera-Melle).

Adipose tissue, a key organ in metabolic syndrome, shows evident gender disparities in the production of adipokines. Levels of the important adipokine adiponectin decrease in men during puberty, as well as in the obese state. Here, we show that this decrease in adiponectin levels is responsible for the increased liver cancer risk in males. We found that testosterone activates the protein JNK in mouse and human adipocytes. JNK-mediated inhibition of adiponectin secretion increases liver cancer cell proliferation, since adiponectin protects against liver cancer development through the activation of AMP-activated protein kinase (AMPK) and p38α.

This study provides insight into adipose tissue to liver crosstalk and its gender relation during cancer development, having the potential to guide strategies for new cancer therapeutics

Proteínas del estrés en la lucha contra la obesidad

Our lab mate Leticia Herrera explains that the incidence of obesity has doubled since 1980, reaching more than 600 million obese adults in 2014 around the world.

[read more in CONEC]

alimentación

Hypothalamic AMPK-ER stress-JNK1 axis mediates the central actions of thyroid hormones on energy balance

Noelia Martínez-Sánchez, Patricia Seoane-Collazo, Cristina Contreras, Luis Varela, Joan Villarroya, Eva Rial-Pensado, Xabier Buqué, Igor Aurrekoetxea, Teresa C. Delgado, Rafael Vázquez-Martínez, Ismael González-García, Juan Roa, Andrew J. Whittle, Beatriz Gomez-Santos, Vidya Velagapudi, Y.C. Loraine Tung, Donald A. Morgan, Peter J. Voshol, Pablo B. Martínez de Morentin, Tania López-González, Laura Liñares-Pose, Francisco Gonzalez, Krishna Chatterjee, Tomás Sobrino, Gema Medina-Gómez, Roger J. Davis, Núria Casals, Matej Orešič, Anthony P. Coll, Antonio Vidal-Puig, Jens Mittag, Manuel Tena-Sempere, María M. Malagón, Carlos Diéguez, María Luz Martínez-Chantar, Patricia Aspichueta, Kamal Rahmouni, Rubén Nogueiras, Guadalupe Sabio, Francesc Villarroya & Miguel López.

Pathway proposed to modulate lipid metabolism in liverThyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT.

The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum (ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPKα1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism.

Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism.


© 2019 Sabio lab

Theme by Anders NorénUp ↑