at the CNIC

Author: Sabio lab (Page 1 of 24)

Cell identity and nucleo-mitochondrial genetic context modulate OXPHOS performance and determine somatic heteroplasmy dynamics

Ana Victoria Lechuga-Vieco, Ana Latorre-Pellicer, Iain G. Johnston, Gennaro Prota, Uzi Gileadi, Raquel Justo-Méndez, Rebeca Acín-Pérez, Raquel Martínez-de-Mena, Jose María Fernández-Toro, Daniel Jimenez-Blasco, Alfonso Mora, Jose A. Nicolás-Ávila, Demetrio J. Santiago, Silvia G. Priori, Juan Pedro Bolaños, Guadalupe Sabio, Luis Miguel Criado, Jesús Ruíz-Cabello, Vincenzo Cerundolo, Nick S. Jones, José Antonio Enríquez.

Heteroplasmy, multiple variants of mitochondrial DNA (mtDNA) in the same cytoplasm, may be naturally generated by mutations but is counteracted by a genetic mtDNA bottleneck during oocyte development.

Mitochondria (Image: Alfonso Mora).

Engineered heteroplasmic mice with nonpathological mtDNA variants reveal a nonrandom tissue-specific mtDNA segregation pattern, with few tissues that do not show segregation. The driving force for this dynamic complex pattern has remained unexplained for decades, challenging our understanding of this fundamental biological problem and hindering clinical planning for inherited diseases.

Here, we demonstrate that the nonrandom mtDNA segregation is an intracellular process based on organelle selection. This cell type–specific decision arises jointly from the impact of mtDNA haplotypes on the oxidative phosphorylation (OXPHOS) system and the cell metabolic requirements and is strongly sensitive to the nuclear context and to environmental cues.

Descubierto un mecanismo que controla la aparición del cáncer de hígado

Es un tumor silencioso. No avisa ni advierte de su presencia. Cuando se detecta suele ser ya demasiado tarde, porque el diagnóstico coincide con la colonización de otros órganos. La temida metástasis. Es el colangiocarcinoma, el segundo cáncer de hígado más común y uno de los más agresivos y con peor pronóstico de toda la amplia familia de tumores. Y es, también, uno de los grandes olvidados, porque la ciencia apenas ha descubierto nuevos tratamientos y ni tan siquiera lo conoce demasiado. Ha sido poco estudiado a nivel molecular, un vacío que ahora empieza a llenarse en parte con un descubrimiento realizado por investigadores del Centro Nacional de Investigaciones Cardiovasculares (CNIC), que han descubierto un mecanismo molecular que controla su aparición. El trabajo acaba de publicarse en la revista PNAS.

De izquierda a derecha: Alfonso Mora, Elena Rodríguez, Guadalupe Sabio, Alejandro Rosell, Cintia Folgueira y Luis Leiva-Vega.

JNK-mediated disruption of bile acid homeostasis promotes intrahepatic cholangiocarcinoma

Elisa Manieri, Cintia Folgueira, María Elena Rodríguez, Luis Leiva-Vega, Laura Esteban-Lafuente, Chaobo Chen, Francisco Javier Cubero, Tamera Barrett, Julie Cavanagh-Kyros, Davide Seruggia, Alejandro Rosell, Fátima Sanchez-Cabo, Manuel Jose Gómez, Maria J. Monte, Jose J. G. Marin, Roger J. Davis, Alfonso Mora & Guadalupe Sabio.

Obesity is associated with hepatic steatosis and activation of the cJun NH2-terminal kinase (JNK) stress-signaling pathway. Studies in mice demonstrate that JNK deficiency in the liver prevents the development of hepatic steatosis. This observation suggests that inhibition of JNK signaling may represent a possible treatment for hepatic steatosis. However, the long-term consequences of JNK inhibition are poorly understood.

Liver cholangiocarcinoma (Photo: Chaobo Chen).

Here we demonstrate that loss of JNK causes changes in cholesterol and bile acid metabolism that promote cholestasis, bile duct proliferation, and intrahepatic cholangiocarcinoma. We identify PPARα activation as the molecular mechanism that accounts for this phenotype .

Our analysis has important implications for the long-term use of JNK inhibitors for the treatment of obesity.

« Older posts

© 2020 Sabio lab

Theme by Anders NorénUp ↑