at the CNIC

Tag: mitochondria (Page 1 of 2)

p38 MAPK priming boosts VSMC proliferation and arteriogenesis by promoting PGC1α-dependent mitochondrial dynamics

Álvaro Sahún-Español, Cristina Clemente, Juan Ignacio Jiménez-Loygorri, Elena Sierra-Filardi, Leticia Herrera-Melle, Aurora Gómez-Durán, Guadalupe Sabio, María Monsalve, Patricia Boya & Alicia G Arroyo.

Vascular smooth muscle cell (VSMC) proliferation is essential for arteriogenesis to restore blood flow after artery occlusion, but the mechanisms underlying this response remain unclear. Based on our previous findings showing increased VSMC proliferation in the neonatal aorta of mice lacking the protease MT4-MMP, we aimed at discovering new players in this process.

p38 MAPK priming by anisomycin in VSMCs.

We demonstrate that MT4-MMP absence boosted VSMC proliferation in vitro in response to PDGF-BB in a cell-autonomous manner through enhanced p38 MAPK activity. Increased phospho-p38 in basal MT4-MMP-null VSMCs augmented the rate of mitochondrial degradation by promoting mitochondrial morphological changes through the co-activator PGC1α as demonstrated in PGC1α−/− VSMCs. We tested the in vivo implications of this pathway in a novel conditional mouse line for selective MT4-MMP deletion in VSMCs and in mice pre-treated with the p38 MAPK activator anisomycin. Priming of p38 MAPK activity in vivo by the absence of the protease MT4-MMP or by anisomycin treatment led to enhanced arteriogenesis and improved flow recovery after femoral artery occlusion.

These findings may open new therapeutic opportunities for peripheral vascular diseases.

Inhibition of ATG3 ameliorates liver steatosis by increasing mitochondrial function

Natáliada Silva Lima, Marcos F. Fondevila, Eva Nóvoa, Xabier Buqué, Maria Mercado-Gómez, Sarah Gallet, Maria J. González-Rellan, Uxia Fernandez, Anne Loyens, Maria Garcia-Vence, Maria del Pilar Chantada-Vazquez, Susana B. Bravo, Patricia Marañon, Ana Senra, Adriana Escudero, Magdalena Leiva, Diana Guallar, Miguel Fidalgo, Pedro Gomes, Marc Claret, Guadalupe Sabio, Marta Varela-Rey, Teresa C. Delgado, Rocio Montero-Vallejo, Javier Ampuero, Miguel López, Carlos Diéguez, Laura Herrero, Dolors Serra, Markus Schwaninger, Vincent Prevo, Rocio Gallego-Duran, Manuel Romero-Gomez, Paula Iruzubieta, Javier Crespo, Maria L. Martinez-Chantar, Carmelo Garcia-Monzon, Agueda Gonzalez-Rodriguez, Patricia Aspichueta & Ruben Nogueiras.

BACKGROUND & AIMS: Autophagy-related gene 3 (ATG3) is an enzyme mainly known for its actions in the LC3 lipidation process, which is essential for autophagy. Whether ATG3 plays a role in lipid metabolism or contributes to nonalcoholic fatty liver disease (NAFLD) remains unknown.

METHODS: By performing a liver proteomic analysis from mice with genetic manipulation of hepatic p63, a regulator of fatty acid metabolism, we identified ATG3 as a new target downstream of p63. ATG3 was evaluated in liver samples of patients with NAFLD. Further, genetic manipulation of ATG3 was performed in human hepatocyte cell lines, primary hepatocytes and in the liver of mice.

JNK1 inhibitor SP600125 blunted increased lipid content (Image: Magdalena Leiva).

RESULTS: ATG3 expression is induced in the liver of animal models and patients with NAFLD (both steatosis and NASH) compared with those without liver disease. Moreover, genetic knockdown of ATG3 in mice and human hepatocytes ameliorates p63- and diet-induced steatosis, while its overexpression increases the lipid load in hepatocytes. The inhibition of hepatic ATG3 improves fatty acid metabolism by reducing c-Jun N-terminal protein kinase 1 (JNK1), which increases sirtuin 1 (SIRT1), carnitine palmitoiltransferase I (CPT1a), and mitochondrial function. Hepatic knockdown of SIRT1 and CPT1a blunts the effects of ATG3 on mitochondrial activity. Unexpectedly, these effects are independent of an autophagic action.

CONCLUSIONS: Collectively, these findings indicate that ATG3 is a novel protein implicated in the development of steatosis.

« Older posts

© 2022 Sabio lab

Theme by Anders NorénUp ↑