at the CNIC

Tag: steatosis (Page 1 of 4)

Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism

María Crespo, Barbara Gonzalez-Teran, Ivana Nikolic, Alfonso Mora, Cintia Folgueira, Elena Rodríguez, Luis Leiva-Vega, Aránzazu Pintor-Chocano, Macarena Fernández-Chacón, Irene Ruiz-Garrido, Beatriz Cicuéndez, Antonia Tomás-Loba, Noelia A-Gonzalez, Ainoa Caballero-Molano, Daniel Beiroa, Lourdes Hernández-Cosido, Jorge L Torres, Norman J Kennedy, Roger J Davis, Rui Benedito, Miguel Marcos, Ruben Nogueiras, Andrés Hidalgo, Nuria Matesanz, Magdalena Leiva & Guadalupe Sabio.

Liver metabolism follows diurnal fluctuations through the modulation of molecular clock genes. Disruption of this molecular clock can result in metabolic disease but its potential regulation by immune cells remains unexplored.

3-D image of liver section showing the distribution on infiltrated neutrophils in red (Image: Magdalena Leiva).

Here, we demonstrated that in steady state, neutrophils infiltrated the mouse liver following a circadian pattern and regulated hepatocyte clock-genes by neutrophil elastase (NE) secretion. NE signals through c-Jun NH2-terminal kinase (JNK) inhibiting fibroblast growth factor 21 (FGF21) and activating Bmal1 expression in the hepatocyte. Interestingly, mice with neutropenia, defective neutrophil infiltration or lacking elastase were protected against steatosis correlating with lower JNK activation, reduced Bmal1 and increased FGF21 expression, together with decreased lipogenesis in the liver. Lastly, using a cohort of human samples we found a direct correlation between JNK activation, NE levels and Bmal1 expression in the liver.

This study demonstrates that neutrophils contribute to the maintenance of daily hepatic homeostasis through the regulation of the NE/JNK/Bmal1 axis.

p107 deficiency increases energy expenditure by inducing brown‐fat thermogenesis and browning of white adipose tissue

Juan Cunarro, Xabier Buque, Sabela Casado, Javier Lugilde, Anxo Vidal, Alfonso Mora, Guadalupe Sabio, Rubén Nogueiras, Patricia Aspichueta, Carlos Diéguez & Sulay Tovar.

The tumor suppressor p107, a pocket protein member of the retinoblastoma susceptibility protein family, plays an important role in the cell cycle and cellular adipocyte differentiation. Nonetheless, the mechanism by which it influences whole body energy homeostasis is unknown.

p107 during adipocyte differentiation

p107 is underexpressed in the stromal fraction (time 0) with the expression increasing during adipocyte differentiation (Image: Alfonso Mora).

The phenotype of p107 knockout (KO) mixed‐background C57BL6/129 mice phenotype is studied by focusing on the involvement of white and brown adipose tissue (WAT and BAT) in energy metabolism. It is shown that p107 KO mice are leaner and have high‐fat diet resistence. This phenomenon is explained by an increase of energy expenditure. The higher energy expenditure is caused by the activation of thermogenesis and may be mediated by both BAT and the browning of WAT. Consequently, it leads to the resistance of p107 KO mice to high‐fat diet effects, prevention of liver steatosis, and improvement of the lipid profile and glucose homeostasis.

These data allowed the unmasking of a mechanism by which a KO of p107 prevents diet‐induced obesity by increasing energy expenditure via increased thermogenesis in BAT and browning of WAT, indicating the relevance of p107 as a modulator of metabolic activity of both brown and white adipocytes. Therefore, it can be targeted for the development of new therapies to ameliorate the metabolic syndrome.

Organ crosstalk in energy balance and metabolic disease (8-11 April 2018)

We are organizing an EMBO Workshop to provide the most important and up-to-date research in the field of metabolism. The workshop will focus on understanding the recent progress in adipocyte biology (cell fate and browning), liver metabolism including steatosis and the role of the central nervous system in the control of the energy homeostasis. Special emphasis will be done to highlight the importance of the organ crosstalk and how signalling pathways in one tissue could affect the metabolism in other tissue.

The goals of this EMBO Workshop are to provide important new insights into the primary pathogenesis of these disorders, and especially focus on those that might lead to new therapies.

« Older posts

© 2021 Sabio lab

Theme by Anders NorénUp ↑