Sabio lab

at the CNIC

Tag: kinases

CICERONE program 2017 for Masters and advanced undergraduate students

Though the CICERONE Program is open to Masters and advanced undergraduate students for extending their scientific training through hands-on experience of laboratory-based biomedical research during the summer recess. In addition to carrying out a supervised research project, the students also attend CNIC seminars.

The aim of the program is to give university students first-hand knowledge of biomedical research so that they can make more informed choices about the possibility of pursuing a scientific career.

Link Size
2017 Guidelines 386 KB
Application form
Document of acceptance 545 KB

For the 2017 call, we are offering two different research projects:

  • Role of p38MAPK in metabolic diseases: Metabolic syndrome is a medical disorder defined by the co-occurrence of obesity, impaired glucose tolerance, dyslipidemia and hypertension. Stress activated protein kinases have been shown to control both obesity by itself and diabetes associated to obesity. These stress kinases are activated by several MAPK activated kinases (MKK). We want to investigate the role of MKK3 in this process and the molecular mechanism by which this kinase could affect diabetes.
  • p38MAPK in heart phisiology: The p38 MAPK pathway transduces a variety of extracellular signals regulating cellular responses to stress, being implicated in cell proliferation, differentiation and apoptosis. Its implication in the development of human diseases it is being deeply studied. Four p38 MAPK family members have been identified: p38α, β, γ and δ.
    Preliminary data from our laboratory show that these kinases may control cytokine production during acute and chronic inflammatory processes. Moreover, studies with genetically modified mice made in our laboratory confirm that p38MAPKs have a role in the development of the heart. Our main objective is to determine if the regulation of the p38MAPK signaling pathway could have beneficial effects in the cardiac response to exercise.

Guadalupe Sabio: “Los políticos quieren resultados muy rápidos y eso, en ciencia, no existe”

Este martes nos hemos acercado a una de las figuras femeninas de la ciencia más importantes de nuestro país. Guadalupe Sabio, una científica joven, encabeza uno de los equipos del Centro Nacional de Investigaciones Cardiovasculares (CNIC), donde estudian enfermedades derivadas en pacientes obesos.

[read more in Cadena Ser]

Guadalupe Sabio

Photo: Cadena Ser/A.T.

p38γ and p38δ reprogram liver metabolism by modulating neutrophil infiltration

Bárbara González‐Terán, Nuria Matesanz, Ivana Nikolic, María Angeles Verdugo, Vinatha Sreeramkumar, Lourdes Hernández‐Cosido, Alfonso Mora, Georgiana Crainiciuc, María Laura Sáiz, Edgar Bernardo, Luis Leiva‐Vega, Elena Rodríguez, Victor Bondía, Jorge L Torres, Sonia Perez‐Sieira, Luis Ortega, Ana Cuenda, Francisco Sanchez‐Madrid, Rubén Nogueiras, Andrés Hidalgo, Miguel Marcos & Guadalupe Sabio.

Non‐alcoholic fatty liver disease (NAFLD) is a major health problem and the main cause of liver disease in Western countries. Although NAFLD is strongly associated with obesity and insulin resistance, its pathogenesis remains poorly understood.

The disease begins with an excessive accumulation of triglycerides in the liver, which stimulates an inflammatory response. Alternative p38 mitogen‐activated kinases (p38γ and p38δ) have been shown to contribute to inflammation in different diseases. Here we demonstrate that p38δ is elevated in livers of obese patients with NAFLD and that mice lacking p38γ/δ in myeloid cells are resistant to diet‐induced fatty liver, hepatic triglyceride accumulation and glucose intolerance. This protective effect is due to defective migration of p38γ/δ‐deficient neutrophils to the damaged liver.

We further show that neutrophil infiltration in wild‐type mice contributes to steatosis development by means of inflammation and liver metabolic changes. Therefore, p38γ and p38δ in myeloid cells provide a potential target for NAFLD therapy.


© 2017 Sabio lab

Crafted with love by ¡Cuánta Ciencia! using Anders Norén´s theme HemingwayUp ↑