at the CNIC

Tag: liver (Page 1 of 8)

Stress kinases in the development of liver steatosis and hepatocellular carcinoma

Beatriz Cicuéndez, Irene Ruiz-Garrido, Alfonso Mora & Guadalupe Sabio.

Non-alcoholic fatty liver disease (NAFLD) is an important component of metabolic syndrome and one of the most prevalent liver diseases worldwide. This disorder is closely linked to hepatic insulin resistance, lipotoxicity, and inflammation.

p38 pathway during liver steatosis
p38 pathway during liver steatosis.

Although the mechanisms that cause steatosis and chronic liver injury in NAFLD remain unclear, a key component of this process is the activation of stress-activated kinases (SAPKs), including p38 and JNK in the liver and immune system.

This review summarizes findings which indicate that the dysregulation of stress kinases plays a fundamental role in the development of steatosis and are important players in inducing liver fibrosis. To avoid the development of steatohepatitis and liver cancer, SAPK activity must be tightly regulated not only in the hepatocytes but also in other tissues, including cells of the immune system. Possible cellular mechanisms of SAPK actions are discussed.

Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism

María Crespo, Barbara Gonzalez-Teran, Ivana Nikolic, Alfonso Mora, Cintia Folgueira, Elena Rodríguez, Luis Leiva-Vega, Aránzazu Pintor-Chocano, Macarena Fernández-Chacón, Irene Ruiz-Garrido, Beatriz Cicuéndez, Antonia Tomás-Loba, Noelia A-Gonzalez, Ainoa Caballero-Molano, Daniel Beiroa, Lourdes Hernández-Cosido, Jorge L Torres, Norman J Kennedy, Roger J Davis, Rui Benedito, Miguel Marcos, Ruben Nogueiras, Andrés Hidalgo, Nuria Matesanz, Magdalena Leiva & Guadalupe Sabio.

Liver metabolism follows diurnal fluctuations through the modulation of molecular clock genes. Disruption of this molecular clock can result in metabolic disease but its potential regulation by immune cells remains unexplored.

3-D image of liver section showing the distribution on infiltrated neutrophils in red (Image: Magdalena Leiva).

Here, we demonstrated that in steady state, neutrophils infiltrated the mouse liver following a circadian pattern and regulated hepatocyte clock-genes by neutrophil elastase (NE) secretion. NE signals through c-Jun NH2-terminal kinase (JNK) inhibiting fibroblast growth factor 21 (FGF21) and activating Bmal1 expression in the hepatocyte. Interestingly, mice with neutropenia, defective neutrophil infiltration or lacking elastase were protected against steatosis correlating with lower JNK activation, reduced Bmal1 and increased FGF21 expression, together with decreased lipogenesis in the liver. Lastly, using a cohort of human samples we found a direct correlation between JNK activation, NE levels and Bmal1 expression in the liver.

This study demonstrates that neutrophils contribute to the maintenance of daily hepatic homeostasis through the regulation of the NE/JNK/Bmal1 axis.

« Older posts

© 2021 Sabio lab

Theme by Anders NorénUp ↑