at the CNIO

Tag: brown adipose tissue (Page 1 of 9)

Absence of MCJ/DnaJC15 promotes brown adipose tissue thermogenesis

Beatriz Cicuéndez, Alfonso Mora, Juan Antonio López, Andrea Curtabbi, Javier Pérez-García, Begoña Porteiro, Daniel Jimenez-Blasco, Pedro Latorre-Muro, Paula Vo, Madison Jerome, Beatriz Gómez-Santos, Rafael Romero-Becerra, Magdalena Leiva, Elena Rodríguez, Marta León, Luis Leiva-Vega, Noemi Gómez-Lado, Jorge L. Torres, Lourdes Hernández-Cosido, Pablo Aguiar, Miguel Marcos, Martin Jastroch, Andreas Daiber, Patricia Aspichueta, Juan Pedro Bolaños, Jessica B. Spinelli, Pere Puigserver, José Antonio Enriquez, Jesús Vázquez, Cintia Folgueira & Guadalupe Sabio.

Obesity poses a global health challenge, demanding a deeper understanding of adipose tissue (AT) and its mitochondria. This study describes the role of the mitochondrial protein Methylation-controlled J protein (MCJ/DnaJC15) in orchestrating brown adipose tissue (BAT) thermogenesis.

Mitochondia from brown fat (Image: Beatriz Cicuéndez).

Here we show how MCJ expression decreases during obesity, as evident in human and mouse adipose tissue samples. MCJKO mice, even without UCP1, a fundamental thermogenic protein, exhibit elevated BAT thermogenesis. Electron microscopy unveils changes in mitochondrial morphology resembling BAT activation. Proteomic analysis confirms these findings and suggests involvement of the eIF2α mediated stress response. The pivotal role of eIF2α is scrutinized by in vivo CRISPR deletion of eIF2α in MCJKO mice, abrogating thermogenesis.

These findings uncover the importance of MCJ as a regulator of BAT thermogenesis, presenting it as a promising target for obesity therapy.

The dual GLP-1/glucagon receptor agonist G49 mimics bariatric surgery effects by inducing metabolic rewiring and inter-organ crosstalk

M. Pilar Valdecantos, Laura Ruiz, Cintia Folgueira, Patricia Rada, Beatriz Gomez-Santos, Maite Solas, Ana B. Hitos, Joss Field, Vera Francisco, Carmen Escalona-Garrido, Sebastián Zagmutt, María Calderon-Dominguez, Paula Mera, Irma Garcia-Martinez, Elsa Maymó-Masip, Diana Grajales, Rosa Alen, Alfonso Mora, Neira Sáinz, Irene Vides-Urrestarazu, Nuria Vilarrasa, José M. Arbones-Mainar, Carlos Zaragoza, María J. Moreno-Aliaga, Patricia Aspichueta, Sonia Fernández-Veledo, Joan Vendrell, Dolors Serra, Laura Herrero, Renate Schreiber, Rudolf Zechner, Guadalupe Sabio, David Hornigold, Cristina M. Rondinone, Lutz Jermutus, Joseph Grimsby & Ángela M. Valverde

Bariatric surgery is effective for the treatment and remission of obesity and type 2 diabetes, but pharmacological approaches which exert similar metabolic adaptations are needed to avoid post-surgical complications.

Brown adipose tissue temperature after G49 administration in mice lacking FGF21 (Image: Cintia Folgueira).

Here we show how G49, an oxyntomodulin (OXM) analog and dual glucagon/glucagon-like peptide-1 receptor (GCGR/GLP-1R) agonist, triggers an inter-organ crosstalk between adipose tissue, pancreas, and liver which is initiated by a rapid release of free fatty acids (FFAs) by white adipose tissue (WAT) in a GCGR-dependent manner. This interactome leads to elevations in adiponectin and fibroblast growth factor 21 (FGF21), causing WAT beiging, brown adipose tissue (BAT) activation, increased energy expenditure (EE) and weight loss. Elevation of OXM, under basal and postprandial conditions, and similar metabolic adaptations after G49 treatment were found in plasma from patients with obesity early after metabolic bariatric surgery.

These results identify G49 as a potential pharmacological alternative sharing with bariatric surgery hormonal and metabolic pathways.

« Older posts

© 2025 Sabio lab

Theme by Anders NorénUp ↑