at the CNIO

Tag: thermogenesis (Page 1 of 2)

A combination of a dopamine receptor 2 agonist and a kappa opioid receptor antagonist synergistically reduces weight in diet-induced obese rodents

Beatriz Cicuéndez, Javier Pérez-García & Cintia Folgueira.

As the global obesity rate increases, so does the urgency to find effective anti-obesity drugs. In the search for therapeutic targets, central nervous system (CNS) mechanisms engaged in the regulation of energy expenditure and food intake, such as the opioid and dopamine systems, are crucial.

Increased temperature in a mouse treated with BC and PF-04455242 (Image: Cintia Folgueira).

In this study, we examined the effect on body weight of two drugs: bromocriptine (BC), a D2R receptor agonist, and PF-04455242, a selective κ opioid receptor (KOR) antagonist. Using diet-induced obese (DIO) rats, we aimed to ascertain whether the administration of BC and PF-04455242, independently or in combination, could enhance body weight loss. Furthermore, the present work demonstrates that the peripheral coadministration of BC and PF-04455242 enhances the reduction of weight in DIO rats and leads to a decrease in adiposity in a food-intake-independent manner. These effects were based on heightened energy expenditure, particularly through the activation of brown adipose tissue (BAT) thermogenesis.

Overall, our findings indicate that the combination of BC and PF-04455242 effectively induces body weight loss through increased energy expenditure by increasing thermogenic activity and highlight the importance of the combined use of drugs to combat obesity.

DIDO is necessary for the adipogenesis that promotes diet-induced obesity

María Ángeles García-López, Alfonso Mora, Patricia Corrales, Tirso Pons, Ainhoa Sánchez de Diego, Amaia Talavera Gutiérrez, Karel H. M. van Wely, Gema Medina-Gómez, Guadalupe Sabio, Carlos Martínez-A, & Thierry Fischer.

The prevalence of overweight and obesity continues to rise in the population worldwide. Because it is an important predisposing factor for cancer, cardiovascular diseases, diabetes mellitus, and COVID-19, obesity reduces life expectancy. Adipose tissue (AT), the main fat storage organ with endocrine capacity, plays fundamental roles in systemic metabolism and obesity-related diseases. Dysfunctional AT can induce excess or reduced body fat (lipodystrophy). Dido1 is a marker gene for stemness; gene-targeting experiments compromised several functions ranging from cell division to embryonic stem cell differentiation, both in vivo and in vitro.

Reduced  body temperature in mutant ΔNT mice.
Reduced body temperature in mutant ΔNT mice (Image: Alfonso Mora).

We report that mutant mice lacking the DIDO N terminus show a lean phenotype. This consists of reduced AT and hypolipidemia, even when mice are fed a high-nutrient diet. DIDO mutation caused hypothermia due to lipoatrophy of white adipose tissue (WAT) and dermal fat thinning. Deep sequencing of the epididymal white fat (Epi WAT) transcriptome supported Dido1 control of the cellular lipid metabolic process. We found that, by controlling the expression of transcription factors such as C/EBPα or PPARγ, Dido1 is necessary for adipocyte differentiation, and that restoring their expression reestablished adipogenesis capacity in Dido1 mutants.

Our model differs from other lipodystrophic mice and could constitute a new system for the development of therapeutic intervention in obesity.

Protein kinase D1 deletion in adipocytes enhances energy dissipation and protects against adiposity

Mona C. Löffler, Alexander E. Mayer, Jonathan Trujillo Viera, Angel Loza Valdes, Rabih El‐Merahbi, Carsten P. Ade, Till Karwen, Werner Schmitz, Anja Slotta, Manuela Erk, Sudha Janaki‐Raman, Nuria Matesanz, Jorge L. Torres, Miguel Marcos, Guadalupe Sabio, Martin Eilers, Almut Schulze, Grzegorz Sumara.

Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others activates G protein‐coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector, which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown.

Correlation between PKD1 and HOMA‐IR

Correlation between PKD1 expression and HOMA‐IR levels in human sWAT (Image: Nuria Matesanz).

Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP‐activated protein kinase (AMPK)‐dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet‐induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the β3‐adrenergic receptor (ADRB3) in a CCAAT/enhancer binding protein (C/EBP)‐α‐ and δ‐dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis.

Our results showed that p38δ is activated in BAT by cold exposure, and lack of this kinase specifically in adipose tissue (p38δFab-KO) resulted in overweight together with reduced energy expenditure and lower body and skin surface temperature in the BAT region. These observations indicate that p38α probably blocks BAT thermogenesis through p38δ inhibition. Consistent with the results obtained in animals, p38α was reduced in visceral and subcutaneous adipose tissue of subjects with obesity and was inversely correlated with body mass index (BMI).

Thus, depletion of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications.

« Older posts

© 2024 Sabio lab

Theme by Anders NorénUp ↑