at the CNIO

Tag: PGC1α

p38α kinase governs muscle strength through PGC1α in mice

Leticia Herrera-Melle, Beatriz Cicuéndez, Juan Antonio López, Phillip A. Dumesic, Sarah E. Wilensky, Elena RodríguezLuis Leiva-VegaAinoa CaballeroMarta León, Jesús Vázquez, Bruce M. Spiegelman, Cintia Folgueira, Alfonso Mora & Guadalupe Sabio.

Aims: skeletal muscle, with its remarkable plasticity and dynamic adaptation, serves as a cornerstone of locomotion and metabolic homeostasis in the human body. Muscle tissue, with its extraordinary capacity for force generation and energy expenditure, plays a fundamental role in the movement, metabolism, and overall health. In this context, we sought to determine the role of p38α in mitochondrial metabolism since mitochondrial dynamics play a crucial role in the development of muscle-related diseases that result in muscle weakness.

Higher muscle strength in p38αMCK-KO mice (Image: Alfonso Mora).

Methods: we conducted our study using male mice (MCK-cre, p38αMCK-KO and PGC1α MCK-KO) and mouse primary myoblasts. We analyzed mitochondrial metabolic, physiological parameters as well as proteomics, western blot, RNA-seq analysis from muscle samples.

Results: our findings highlight the critical involvement of muscle p38α in the regulation of mitochondrial function, a key determinant of muscle strength. The absence of p38α triggers changes in mitochondrial dynamics through the activation of PGC1α, a central regulator of mitochondrial biogenesis. These results have substantial implications for understanding the complex interplay between p38α kinase, PGC1α activation, and mitochondrial content, thereby enhancing our knowledge in the control of muscle biology.

Conclusions: this knowledge holds relevance for conditions associated with muscle weakness, where disruptions in these molecular pathways are frequently implicated in diminishing physical strength. Our research underscores the potential importance of targeting the p38α and PGC1α pathways within muscle, offering promising avenues for the advancement of innovative treatments. Such interventions hold the potential to improve the quality of life for individuals affected by muscle-related diseases.

p38 MAPK priming boosts VSMC proliferation and arteriogenesis by promoting PGC1α-dependent mitochondrial dynamics

Álvaro Sahún-Español, Cristina Clemente, Juan Ignacio Jiménez-Loygorri, Elena Sierra-Filardi, Leticia Herrera-Melle, Aurora Gómez-Durán, Guadalupe Sabio, María Monsalve, Patricia Boya & Alicia G Arroyo.

Vascular smooth muscle cell (VSMC) proliferation is essential for arteriogenesis to restore blood flow after artery occlusion, but the mechanisms underlying this response remain unclear. Based on our previous findings showing increased VSMC proliferation in the neonatal aorta of mice lacking the protease MT4-MMP, we aimed at discovering new players in this process.

p38 MAPK priming by anisomycin in VSMCs.

We demonstrate that MT4-MMP absence boosted VSMC proliferation in vitro in response to PDGF-BB in a cell-autonomous manner through enhanced p38 MAPK activity. Increased phospho-p38 in basal MT4-MMP-null VSMCs augmented the rate of mitochondrial degradation by promoting mitochondrial morphological changes through the co-activator PGC1α as demonstrated in PGC1α−/− VSMCs. We tested the in vivo implications of this pathway in a novel conditional mouse line for selective MT4-MMP deletion in VSMCs and in mice pre-treated with the p38 MAPK activator anisomycin. Priming of p38 MAPK activity in vivo by the absence of the protease MT4-MMP or by anisomycin treatment led to enhanced arteriogenesis and improved flow recovery after femoral artery occlusion.

These findings may open new therapeutic opportunities for peripheral vascular diseases.

© 2024 Sabio lab

Theme by Anders NorénUp ↑